Svátek má

Aneta
16°C
Overcast clouds
Generic selectors
Pouze přesné shody
Hledat v titulku
Hledat v obsahu
16°C
Overcast clouds
Úterý
79.1345%
03:13
Min: 14°C
992
18:45
Max: 18°C
SSW 1 m/s

Teplota fotovoltaických panelů významně ovlivňuje účinnost přeměny energie

Je známo, že teplota fotovoltaických (PV) článků významně ovlivňuje účinnost přeměny energie. Vyplývá to z fyzikální teorie polovodičů a rovněž to bylo mnohokrát ověřeno v praxi.

Změny teploty mění U-I charakteristiky PV článků. Rostoucí teplota vede jednak ke snížení napětí naprázdno v důsledku posunu hladiny Fermiho energie směrem ke středu zakázaného pásu energetických hladin a současně k růstu zkratového proudu v důsledku zmenšení šířky zakázaného pásu. Součin obou hodnot odpovídá výstupnímu elektrickému výkonu, který klesá při rostoucí teplotě a konstantní intenzitě osvětlení, protože pokles napětí naprázdno je zde dominantní. Všechny dosud publikované práce ale prezentovaly výsledky naměřené v rozsahu teplot cca od -20 °C do +60 °C, tedy v intervalu, v jakém se teploty PV panelů běžně pohybují v normálních klimatických podmínkách bez koncentrace záření.

Pokud ale PV systém pracuje v místech s extrémními klimatickými podmínkami (např. na Sibiři), mohou být změny teplot během roku mnohem větší. Na povrchu Země může teplota PV panelů bez koncentrace záření dosáhnout hodnot v extrémních případech cca od -100 °C do +100 °C. V případě použití PV panelů ve vesmíru může být interval pracovních teplot ještě širší. V laboratoři Technické fakulty ČZU v Praze na katedře fyziky provedli vědci měření U-I charakteristik PV článků na bázi monokrystalického křemíku ve velmi širokém rozmezí teplot od -170 °C do +100 °C a výsledky publikovali v článku [1].

Teplotní závislost napětí naprázdno je přibližně lineární v celém měřeném rozsahu teplot. Pokles účinnosti fotovoltaické přeměny energie s rostoucí teplotou vykazuje přibližně konstantní hodnotu cca 0,5 %/ °C, což je v dobrém souladu s fyzikální teorií. K odklonu od lineární závislosti podle fyzikální teorie polovodičů musí dojít, ale zřejmě k tomu dochází mimo uvedený interval teplot. Je tedy vidět, že na Zemi v extrémních podmínkách se může během roku až zdvojnásobit účinnost přeměny energie i napětí naprázdno. V kosmických aplikacích se mohou tyto hodnoty až ztrojnásobit během jednoho oběhu satelitu kolem Země. S tím je třeba počítat při konstrukci PV systémů. Jednotlivé součásti, a hlavně přepěťové ochrany musí být pečlivě voleny, aby nedošlo k poškození či zničení připojených zařízení. Zejména elektronické měniče bývají citlivé na přepětí i podpětí.

prof. Ing. Martin Libra, CSc., doc. Ing. Vladislav Poulek, CSc. – Technická fakulta ČZU v Praze, katedra fyziky

[1] Libra, M., Petrík, T., Poulek, V., Tyukhov, I.I., Kouřím, P., Changes in the Efficiency of Photovoltaic Energy Conversion in Temperature Range With Extreme Limits. IEEE Journal of Photovoltaics, 2021, 11(6), 1479-1484, doi: 10.1109/JPHOTOV.2021.3108484.

Na snímku I-U a P-U charakteristiky fotovoltaického článku při dvou extrémních teplotách

Podobné články

Rychlé odkazy

Shop ČZU

Point One

CVPK

Klub absolventů

Poníček

Kariérní centrum

Kontaktní informace

Česká zemědělská univerzita v Praze

Kamýcká 129

165 00 Praha – Suchdol

IČO: 60460709

DIČ: CZ60460709

ID datové schránky ČZU: 3hdj9cb

Tel. ústředna: +420 224 381 111

Materiály umístěné na tomto webu mohou být publikovány pouze se souhlasem ČZU. Informace o zpracování a ochraně osobních údajů na ČZU v Praze.
© 2021 Česká zemědělská univerzita v Praze – Všechna práva vyhrazena

Skip to content